Surgical Correction of Presbyopia in 2016

Scott O. Sykes, MD Utah Eye Centers Mount Ogden Eye Center

Outline

- Non-Surgical Options
- Laser Vision Correction
- Multifocal / Accommodative IOLs
- Corneal Inlays
- Comanaging Presbyopia Surgery

Presbyopia Correction: Non-Surgical Options

Bifocal Spectacles

Monovision CTLs

Multifocal CTLs

Presbyopia Correction: Surgical Options

- Monovision with LASIK or PRK
- Lensectomy with IOL
 - Monovision with Monofocal IOLs
 - Accommodative IOLs
 - Multifocal IOLs
- Corneal Inlays
 - Acufocus Kamra
 - Non FDA approved Inlays

Monovision Patient Selection

Current happy monovision CTL patients

- LASIK best option
 - Myopic presbyopes with no significant cataract
- Lensectomy best option
 - Hyperopic Presbyopes
 - Presbyopes with any cataract
 - Avoid pushing refractive lensectomy to insurance covered cataract surgery

Monovision Lensectomy with IOL

Astigmatic patients

- Only option for presbyopia correction currently.
- Distance Eye
 - Requires near perfect refractive result.

Near eye

- More forgiving with sphere and cylinder.
- "Reversible"
 - Glasses for night driving or other tasks

Lensectomy with Accommodative and Multifocal IOLs

- First Generation Presbyopia IOLs
 - Array
 - Crystalens
 - ReStor
 - ReZoom
 - Tecnis MF

Second Generation Presbyopia IOLs

- Low add Tecnis MF 3.25, 2.75 and ReStor 2.5
- Crystalens HD and AO

Crystalens AO

Hinged optic to increase movement

Lengthened haptics to maximize amplitude

Smaller optic to maintain 10.5mm length

Ciliary Muscle

Accommodative IOLs

Introducing new Synchrony lens implants

Balanced View Optics[™] Technology

Multifocal IOLs

Multifocal IOLs

- Advantage: They work!
- First Generation Limitations
 - Poor intermediate vision
 - Halos or Waxy vision
- Second Generation
 - Excellent intermediate and near vision
 - Mild halos
- ٠All
 - Require excellent refractive result (sphere and cylinder)
 - Require careful patient selection

Anatomy of the Apodized Diffractive IOL

Step heights decrease peripherally from ` 1.3 – 0.2 microns

Central 3.6 mm diffractive structure

A +4.0 add at lens plane equaling +3.2 at spectacle plane

Multifocal IOLs

Restor		Spectacle Plane	
- 4	\rightarrow	3.25	
• 3	\rightarrow	2.50	
• 2.5	\rightarrow	2.00	

Tecnis Multifocal Spectacle Plane

- ZMB / 4.0 → 3.00
- ZLB / 3.25 → 2.37
- ZKB / 2.75 → 2.00

DIFFRACTIVE ASPHERIC

TECNIS[®] Multifocal IOLs

This presentation is for and on behalf of Abbott Medical Optics Inc. Doctors who participated are paid consultants for Abbott Medical Optics Inc.

DIFFRACTIVE ASPHERIC

DIFFRACTIVE ASPHERIC

PP2015CT0047

TECNIS® Multifocal Family of IOLs

Clinical Outcomes

Ability to Function Comfortably Without Glasses at 6 Months (Bilateral Subjects)*

>80%

of patients reported an ability to function comfortably without glasses at all distances

* ZM900 (+4.0 D) data are historical from a separate clinical study using the same test methodology.

TECNIS® Multifocal IOLs +3.25 D and +2.75 D

Clinical Outcomes

Spontaneous Reports of Halos in a Non-Directed Study

TECNIS® Multifocal IOLs +3.25 D and +2.75 D Clinical Outcomes

Spontaneous Reports of Night Glare in a Non-Directed Study

Tecnis Multifocal IOL - Halo Performance

Model	ZKB00	ZLB00	ZMB00
	(2.75D add)	(3.25D add)	(4D add)
Gamma 0.15 Relative Normalization			

Lower add power decreases the halo

Refractive MF and Diffractive

Zonal Refractive (5 Zones) – AMO ARRAY

Light energy dramatically varies with number of zones exposed by pupil, contributes to halos at night

Full Optic Diffractive – 3M

Light energy equally shared over broad range of pupils/lighting conditions, contributes to halos at night

Apodized Diffractive – Alcon ReSTOR

Light energy equally shared for bright to moderate lighting/pupils – apodization gradually increases distance energy with larger pupils - reduces halos at night

Multifocal IOL Patient Selection

Pre-operative Considerations

- Patients who no longer desire to wear glasses (Duh!)
- Minimal astigmatism
- No significant ocular disease
 - Cornea very healthy: Topography on every patient
 - Dry eye, ABMD, etc
 - Retina healthy: OCT on every patient
- Patients visual demands
- Patient expectations

Multifocal IOL Patient Selection

- What if the patient has had prior cataract removal with monofocal IOL in the other eye?
- What if the patient has irreversible poor vision in the other eye?
- What if the patient has had prior LASIK/PRK or RK?
- What is the patient's preoperative reading distance?

Multifocal IOL: Postoperative Management

Most patients very easy: rapid adaptation and excellent vision

- Much less "hand holding" than prior generations
- Causes and treatment of delayed recovery
 - Surface disease: Aggressively treat dry eye
 - Residual refractive error
 - May require LRI, LASIK or PRK after stable for three months
 - CME
 - Not common using modern NSAIDS at least 3 weeks post operatively

Multifocal IOL: Postoperative Management

Psychological

- Managing expectations (different focal length, etc)
- Concerns with halos—not common problem with lower add MF IOL

Patience

... yet don't hesitate to refer unhappy patient back to surgeon

Corneal Inlays

Acufocus Kamra Inlay Only FDA approved inlay for presbyopia correction

> Presbia Flexivue Microlens

Revision Optics' Raindrop

Inlay Concept

- First conceived in 1949 by Dr. Jose Barraquer
- Primary advantages:
 - Tissue-sparing
 - Removable
- Primary design challenges:
 - Effective optics
 - Biocompatibility with the cornea
 - Stable and predictable results

KAMRA[®] Inlay

Acufocus Kamra Inlay

First and only approved inlay for presbyopia correction > Available in over 49 countries > Over 25,000 implanted > Performed over 13 years FDA study started 9 years ago > FDA study included 507 patients

KAMRA[®] Inlay Design

- Inlay improves near vision by extending depth-of-focus
- Central aperture is a hole in the inlay and has no power
- Inlay provides an unobstructed pathway for focused light to reach the retina

Permeability

Depth-of-Focus Pre-op and Post-op

Where the KAMRA® inlay falls within the Patient Spectrum

KAMRA[®] Inlay Indications for Use

- Patient who is between 45 and 60 years old
 Cycloplegic refraction between +0.50 D and -0.75 D with less than or equal to 0.75 D of refractive cylinder
- Patient does not require glasses or contact lenses for clear distance vision
- Patient requires near correction of +1.00 D to +2.50 D of reading add

Patient Selection

 Patient who is between 45 and 60 years old
 Cycloplegic refraction between Plano and -0.75 D with less than or equal to 0.75 D of refractive cylinder
 Patient does not require glasses or contact longes for clear distance vision

- lenses for clear distance vision
- Pachymetry > 500 microns
- Mesopic pupil size > 6.0mm

Patient Selection

Dislikes reading glasses
 Feels disabled by loss of near vision
 Lifestyle motivated
 Easy going
 Willing to participate in the recovery process

Patient Exclusions

Any ocular or systemic disease that is a contraindication for other refractive surgery

- Keratoconus
- Severe dry eye
- Cataracts
- Macular degeneration
- Corneal dystrophy or degeneration
- Amblyopia

Unrealistic Expectations / Psychological issues

Surgical Procedure

 Description: A femtosecond laser created pocket in the stroma at a depth of 200-250µm with femtosecond laser spot/line settings of < 6x6 or equivalent is recommended.

Pocket Emmetropic KAMRA (PEK)

Surgical Procedure

Surgical Procedure

US IDE - Study Design

- > 24 Sites (US, Europe & Asia-Pacific)
- Prospective, non-randomized clinical trial
- Subjects:
 - 507 enrolled and implanted in non-dominant eye
 - Naturally occurring presbyopic emmetropes
 - 45 60 years old
 - Spherical equivalent between + 0.50 D to -0.75 D
 - Uncorrected Near VA
 - Worse than 20/40 (0.5), and
 - Better than 20/100 (0.2)
 - Best Corrected Distance VA ≥ 20/20 (1.0) in both eyes

Distance, Intermediate and Near Visual Acuities: Implanted Eyes

- An average 3 line gain at 12 months was achieved and sustained over the duration of the study
- Achieved results remain stable over the 36 month follow-up

US IDE Patients

Influence of MRSE on Near Acuity at 12 Months

Combination with a small amount of myopia improves near vision results

Uncorrected Visual Acuity in the KAMRA® Inlay Eye

- Change between Pre-Op and 36 Months:
 - Mean UCNVA improved 5 lines from J8 to J2
 - Mean UCDVA reduction from 20/18.5 to 20/20
 - Mean MRSE changed from 0.02 + 0.28 D to 0.14 + 0.72 D

*N=153 at 36 months, ≤ 6x6 group, data on file at AcuFocus™

Binocular Contrast Sensitivity

- There is a small reduction in photopic and mesopic contrast sensitivity however scores remain within normal limits at 24 months post-op.
- Ultimately the reduction is minor when compared to the benefits of the inlay**

*Data on file at AcuFocus

*Data on file at AcuFocus

**Seyeddain et al. Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up. J Cataract Refract Surg 2012; 38:35-45

Stereoacuity with the KAMRA® Inlay

 There is <u>no change</u> in mean distance stereoacuity scores between pre-op and 6 months post-inlay implantation

Mean Distance Stereoacuity

Visual Field

- Visual field remains within normal limits after inlay implantation
- Data from the clinical trial showed a slight overall decrease in sensitivity (~1.0 dB change from baseline).¹
- No scotomas induced by the presence of the inlay^{1,2}
- No statistically significant difference in extent and total area of the visual field was \triangleright found between implanted and non-implanted eyes³

Pre-Op: Inlay Eye

0 + 3% 8 + 1% 8 + 1%

of the local differences and

1 - US IDE Clinical Trial

- 2 Sanchez et al. ARVO 2012
- 3 Brooker et al, ARVO 2013

36 Mo Post-Op: Inlay Eye

Ophthalmic Assessments and the KAMRA[®] Inlay

The following ocular assessments are possible with the KAMRA inlay in situ:

- Fundus photography
- OCT
- Visual field assessment
- Intraocular pressure measurement
- Contrast sensitivity testing
- Gonioscopy

Images courtesy of Günther Grabner, MD

Post-Op Care

- F/U 1 day, 1 week, 1-2-3 months, 1 year
- > Topical Antibiotic for 1 week
- Topical 1% Pred QID for 1 week
- > FML QID 2nd-4th week, TID 2nd month, BID 3rd month
- AcuTarget HD analysis 1 day and 1 month
- VA near, intermediate, far
- midpoint refraction (red-green balance)
- Topography at 1 month and beyond
- SLE looking for tear film stability

Summary

- The KAMRA® inlay is an effective solution for presbyopia to bridge the gap between LASIK and cataract surgery
- The small aperture inlay reliably extends depth of focus providing uninterrupted vision from near to far
- Maintains stereopsis and binocular vision, regardless of monocular implantation
- The effect is proven to be stable over time
- Design does not interfere with ocular assessments or secondary surgical procedures

> Presbia Flexivue Microlens

- Clear hydrophilic acrylic refractive inlay 3.2mm wide with a 1.6mm hole in the center
- The power of the inlay ring ranges from +1 to +3.5
- Center hole for long distance
- Causes slight myopic shift
- Combination of monovision and multifocality

Presbia Flexivue Microlens Inlay

> ReVision Optics' Raindrop

- A hydrogel inlay 2mm in diameter and 32 microns thick in the center
- Works by causing corneal steepening in the center, creating a multifocal cornea

ReVision Optics' Raindrop

> ReVision Optics' Raindrop

Corneal map of Raindrop patient illustrating prolate shape

Summary

- The KAMRA® inlay is the first of the new corneal inlays FDA approved as an effective solution for presbyopia to bridge the gap between LASIK and cataract surgery
- The Kamra inlay is by far the most studied inlay with more than 20,000 implanted world wide
- Kamra inlay increases depth of focus like a high f-stop camera lens
- Other inlays are taking a different approach to correcting presbyopia by using multifocality
- Look for many new technologies to emerge in this new surgical frontier

Comanagement: Final Considerations

You know your patients, their needs and interests.

Your patients trust your opinion.

You help them begin learning their

options.

Hearing more than once builds confidence.

Thank You