<u>Ocular Pharm</u>: A Conglomeration of New Ideas, New Uses, Old Drugs, & Old Topics

Chris Borgman, OD, FAAO

Disclosures:

I have no disclosures to report.

Ground Rules...

References/sources available upon request

- ♦I'm not perfect...
- Please email me with questions:
 cborgman@sco.edu

Alphagan (Brimonidine) & Pupillary Miosis???

Brimonidine (Alphagan-P)

A highly specific α-2 adrenergic receptor agonist
 Alpha-2 receptors at <u>pre-synaptic</u> nerve terminals
 Binding sites for brimonidine localized <u>on the iris</u>

- Activation of Alpha-2 receptors inhibits the release of the neurotransmitter, norepinephrine
- Therefore, norepinephrine is not available for receptor activation & adrenergic Pupil Dilation → decreased by 1-2 mm
- Onset 30 mins; up to 4-6 hrs

- Dilator is relaxed in the presence of the alpha-2 brimonidine
- Therefore, the sphincter has increased control over pupil size
- → the balance has shifted → Smaller pupil

Why the scotopic miosis with brimonidine

- Stimulating alpha-1 receptors ->

 Mydriasis
 - By contraction of the iris dilator

In dim illumination:

- Norepinephrine mediated Dilator Muscle:
 Cause of evoil dilation
- Cause of pupil dilation
 Unopposed by the acetylcholine mediated sphincter muscles.

Why less effect on pupil size in bright illumination?

 \diamond has no effect the cholinergic driven sphincter muscle in photopic conditions (PNS) \diamond There is a less obvious size difference with and without brimonidine

Therefore, photopic pupil size is relatively normal

Alphagan (Brimonidine) & Redness Reliever

Brimonidine tartrate 0.025%

- ♦ Diluted brimonidine solution → vasoconstriction
 ♦ Post-synaptic junction
- * Just completed Phase 3 trials (Bausch & Lomb
- No rebound hyperemia with discontinuation
- ♦ No tachyphylaxis not
- Onset within 5 minute
- $\diamond\,$ Seems to work on smaller caliber conjunctival vessels without affecting larger vessels so blood flow is not affected
- Duration of effect ~4 hrs

Brimonidine Rosacea Gel

- Approved for rosacea redness/erythema
 Dosing: Apply to erythematous patches once daily
 MOA: post-synaptic alpha agonist -> sympathomimetic
- Causes vasoconstriction of facial blood vessels
 Onset 30 minutes; Duration 12 hours
- FDA category B
- Main SE's:
 Flushing /redness (8-10%)
 Worsening of rosacea (5%)
- 1 month study showed modest results only:
 28% saw reduction in redness with brimonidine
 10% saw reduction in redness with vehicle
- · Other use: Immature scar redness reducer

<u>Topical Timolol</u> <u>& Superior Oblique Myokymia</u>

Dx = Superior Oblique Myokymia

- First reported in 1906 by Duane "unilateral rotary nystagmus"
 A standard strength strength
- $\, \diamond \, \, {\rm In}$ 1970, Hoyt coined term "superior oblique myokymia"
- * Defn: monocular quivering/firing of superior obliqu
- <u>Sx:</u> spontaneous monocular diplopia, quivering/jumping of visior monocular oscillopsia, key is <u>monocular</u> nature
- <u>Sn: low amplitude, high frequency intorsion of affected eye,</u> intermittent/cyclic frequency, worse when looking down and in towards nose
- Most attacks last between 3-15 sec, rare cases of indefinite attacks

SOM Tx Options

- Observation
- ♦ Medical
- ♦ Oral medication
- Surgical
 - ♦ EOM/Strab surgery
- Microvascular decompressi

New Tx? Topical Beta-blockers???

- Bibby et al. (1994) showed one case report of a patient's SOM Sx being relieved with <u>betaxolol</u> glaucoma drops
 Based off of case reports which used oral propranolol
 Weak membrane stabilizing abilities of beta blockers = MOA
- MOA: hypothesized that enough drug was absorbed <u>systemically</u> through conjunctival blood vessels to elicit its effect (systemic theory)

30 YO WF with SOM x 10 yrs

- *Started topical timolol 0.5% drops BID OD!
- Patient reported 100% resolution of Sx after only 2 days of use!!!!
- ♦Phone call 4 months later, still 100% resolution of Sx but only using drops QAM OD
- *12+ month later still Sx-free on drops!

Story doesn't end here...

- Given that numbers of SOM are low to begin with.....cases
 reports of topical beta-blockers providing relief of Sx are even rarer
 reports.
 Section 2019
 S
- ♦ Bibby et al.....hypothesized "systemic theory"
- ♦ I developed my own theory......

CB's "Localized Theory"

♦ In SOM, when successfully treated with topical betablockers, the effect occurs *locally* at the trochlear nerve endings themselves and/or on the trochlear muscle itself, not systemically absorbed via the conjunctival blood vessels.

♦ I would argue <u>AGAINST</u> Bibby's <u>systemic</u> absorption theory.

Proof of Localized Theory

- ◊ Sx disappeared in 1-2 days of use again

What does this mean?

Interesting Potential Off-Label Uses of β-Blockers???

1. Superior Oblique Myokymia →

cal timolol in the treatment of usia secondary to superior oblique w. J Optom. 2014:7:68-74.

2. Eyelid Myokymia →

MOA: stabilization of membrane excitability/resting state of action potential (phase 4) \rightarrow

Central Serous Chorioretinopathy

- Excogenous/endogenous cortisol, Cushing's syndrome, psychological stress, Type A, pregnancy = risk factors
 Males, HTN, collagen vascular diseases, H.Pylori infection

OCT Evidence of MOA?

Corticosteroids

- ♦ Glucocorticoids & Mineralcorticoids both induce choroidal enlargement/thickening and cause vessel dilation and leakage which can overcome RPE's defenses → neurosensory detachment

Eplerenone (Inspra)

 FDA-approved i 	in 2002 for 3	HTN: 200	3 for CHF
------------------------------------	---------------	----------	-----------

- Standard dose for CSCR: 25 mg/day PO x 1 week, then 50 mg/day x 3 months

Mineralcorticoid Receptor

- MR antagonists → down-regulate KCa2.3 channels → choroidal vasoconstriction → SRF reduction
- Remember, MR is <u>NOT</u> found in retinal tissues, therefore retina is unaffected by both mineralcorticoids and glucocorticoids

Eplerenone vs. Spironolactone

How effective is Eplerenone on CSCR?

It's relatively limited adverse effect profile and high selectivity and specificity (to the mineralcoriticid/glucocorticoid receptors) make eplenerone an ideal treatment modality for CSCR."

Bottom Line..

- * Consider Eplerenone in CSCR lasting >3-4 months
- * Monitor serum potassium levels; co-manage with PCP

What is <u>cheapest way</u> t	to maximum meds for glaucoma?	
♦ Latanoprost → \$14.8 ♦ Timolol 0.5% → \$4.00 ♦ Brimonidine 0.2% → \$9.90	TOTAL: \$28.78/month	
What is cheapest way to r	naximum meds for glaucoma with the	
*	amount of drops???	
♦ Latanoprost ♦ Dorzolamide/Timolol (2%/0.5%)	 → \$14.88 → \$23.53 <u>TOTAL</u>: \$38.41/month 	

	What is <u>cheapest</u>	way to	get separate	steroid and	antibiotic?
--	-------------------------	--------	--------------	-------------	-------------

	FML 0.1%	\$34.06		
	Pred Acetate 1%	\$29.63		
	Dexamethasone 0.1%	\$23.00	1	TOTAL: \$27.00/mc
	Tobramycin	\$4.00	Ś	<u>101AL</u> : \$27.007mc
	Polymyxin/TMP	\$4.00		

What is cheapest way to maximum meds for steroid and antibiotic? → \$126.51

- → \$55.54
 → \$210.28
- _____ TOTAL: \$4.00/month

Antihistamin			ABx		Antivir		Steroids	
Loratadine	Naproxen		Cephale		Acyclov	/ir	Prednisone	
	Indometh	acin	Amoxic	illin			Dexamethaso	ne
	Ibuprofen		Ciprofle	oxacin				
	Meloxicar	n	SMZ/T	MP				
Topi	cal ABx	Glauc	coma	Steroids		Comb	os	
Gen	amicin	Timol	lol	Triamci	nolone	Maxit	rol	
Tobr	amycin	Levob	unolol					
Poly	myxin/TMP							

Blurred Vision?

3 of 926 subjects (0.32% cases)

Transient increase in myopia

♦ How?

- The various mechanisms of drug-induced myopia reported in literature ar
 - accommodation spasm
- ♦ ciliary spasm
- ♦ increase in thickness of the lens and
- \diamond Ciliary body rotation and edema resulting in forward movement of iris lens diaphragm \Rightarrow acute myopiants acute myopiants are consistent of the second s

Borgman's Theoretical MOA???

Relative Abundance of SHT Recepts-Subtyen #RNA Signal SHT_{2b} SHT₂ <th colspan="2"

lies show:

- ♦ Increased levels of serotonin → increased sympathetic innervation → mydriasis!
 ♦ SSRI's and/or MAOI's
- Abilify (aripiprazole) is a serotonin receptor <u>blocker</u> (5-HT2A receptor)
- \diamond Decreased levels of serotonin \rightarrow decreased sympathetic innervation \rightarrow miosis & accomm
- Increased myopia!

New Horizons in Ocular Neovascularization Tx's

- * Intravitreal VEGF injections
- * Topical Anti-VEGF eye drops
- Pigment epithelium-derived factor

Intravitreal anti-VEGF Injections...

- ♦ Avastin, Lucentis, Eyele
- Used as monotherapy <u>and/or</u> in combination therapy
- MOA: Bind to free-floating VEGF molecule to prevent attachment to endothelial surface recepto
 by definition, do nothing for underlying disorder...
- Have been shown to stimulate regression of neo within 1-2 days!
- Short-half lives (~20 days); wear off over time

<u>New:</u> Pigment epithelium-derived factor (PEDF)

♦ <u>MOA</u>: Inhibits formation of VEGF
 Targets new blood vessels with no measureable effect on mature blood vessel
 Homeostatic balance between VEGF and PEDF
 ♦ Increased VEGF = Decreased PEDF

Other effects of PEDF...

- Neuroprotection in CNS
 Eyes included! Glaucoma?
 Protection from NMDA, gluta
- Reduces ischemia in retinal tissues
 Tability and the formation (another the formation)
- Largest effect on metastasis!
- ♦ Reduces ROS in CNS
- Cardiovascular protection
- ♦ Enhances metabolism (for the better!) ♦ DM??

Promising Future for PEDF?

- Although PEDF exhibits effective therapeutic potential, its application is limited by its short half-life, unstable pharmacology, and administration pathway. --- Bai YJ, et al. (2012)

Topical anti-VEGF therapy???

- * Avastin (bevacizumab) in eyedrop form!
- * Has been shown to penetrate through cornea tissues into anterior chambe
- * Avastin drops used QID OU x 2 weeks caused iris neo regression in 3 of 8 patients in one
- Decreases risks of VH, traumatic cataract, RD, endophthalmitis, etc.
- Still in its infancy
- * Also, for corneal neovascularization too
- Actual atkanne ourns

Phenylephrine & Risk of Increased Blood Pressure

Is the fear justified???

Phenylephrine Review...

- Developed in 1933 from EPI
- Potent vasoconstrictor; alpha-1 agonist
- No beta receptor activity at all
- Dilation of pupil <u>without</u> cyclop
- Neglible effect on IO:
- Maximum duration of action = 6-7 hrs
- Peripheral vasoconstriction can lead to rapidly elevated BP in some patients
 Systolic and diastolic are affected

Can PHE cause increased BP? How likely is this to happen if it does?

- ♦ Some authors say: Mixed PHE-induced HTN responses & Others yet say: definite increases in BP with topical PHE

Phenylephrine-Induced HTN

- Majority of cases are within <u>10-30 minutes</u> of instillation

- HA
 Tachycardia
 Chest pain
 Palpitations
 Perspiration
 Nausea/vomiting
 SOB
- SOB
 Reflex bradycardia/hypotension
- ♦ End-Organ Damage:
 SAH
 Aneurysm rupture
 *Papilledema
 Pulmonary edema
 MI
 CVA

Worst Cases...

*Cotton pledget soaked in 10& PHE and left on surgical eye

- ♦ More than one drop of 10% PHE
- *PHE used in conjunction with Atropine
- Multiple rounds of PHE in peds/children

	Total (n)	10% PH	E Severe	10% PH	E Increased BP
Adults	1864	7.56%	(n=141/1864)	14.70%	(n=274/1864)
Pediatrics	44	11.36%	(n=5/44)	84.09%	(n=37/44)
	2.5%1	PHE Total F	lisk of Adverse l	Events	
			lisk of Adverse 1		
	2.5%]		Lisk of Adverse 1 IE Severe		IE Increased BP
Adults					IE Increased BP (n=15/2155)

Note: numbers based on 80+ articles on HTN & PHE risk

What about # of drops and risk in A

	Total (n)		Risk of causing increased blood pressure in adult patients				
10% PHE1 gtt OU	460	2.17%	(n=10/460)				
10% PHE2 gtts OU	181	11.05%	(n=20/181)				
10% PHE3+ gtts OU	761	26.81%	(n=204/761)				
	Total (n)	Risk of car	using increased blood pressure in				
2.5% PHE1 gtt OU	Total (n) 767						

What about # of drops and risk in PEDS???

	Total (n)		of causing increased blood pressure in tric patients
10% PHE1 gtt OU	4	100%	(n=4/4)
10% PHE2 gtts OU	20	100%	(n=20/20)
10% PHE3+ gtts OU	20	65%	(n=13/20)
	Total (n)	Risk of a	causing increased blood pressure in
	1 1 1		causing increased blood pressure in
2.5% PHE1 gtt OU			
2.5% PHE1 gtt OU 2.5% PHE2 gtts OU	31	pediatric 0%	patients

PHE Guidelines

- \diamond <1% risk of elevated BP with one round of 2.5%
- $\diamond\,If$ used, no more than one drop in each eye, or two drops total in single eye
- & Do NOT use 5-10% in infants & Only use one drop of 2.5% PHE OU in select cases in peds
- Borgman's Rule: no more than 2 rounds of 2,5% PHE OU should be used at any one visit in adults regardless of BP

So.....is the fear justified???

Ethambutol Ocular Toxicity Risk Calculations

Ethambutol

- * Treatment: minimum of 6 months in most cases

- No safe dose of EMB has been reported!

Retrobulbar Optic Neuritis

EMB Toxicity

Table 1: Percentage risk range and mean risk of developing ocular toxicity based on daily dosing of Ethambutol in regards to milligrams per kilogram per day (mg/kg/day) based on available literature^{1,2,4,6,8,12,14,22,24,26,28,30,38,46}

Daily Dose	15 mg/kg/d ay	17.85 mg/kg/d ay	20 mg/kg/d ay	25 mg/kg/d ay	30-35 mg/kg/d ay	40-50 mg/kg /day	60-100 mg/kg/ day
Risk Range	0.62-2%	1.5%	3-6.3%	2.2-9.4%	15-18.6%	15- 33.3%	40-50%
Mean Risk	1.31%	1.5%	4.65%	5.8%	16.8%	24.15%	45%

Example #1

- A 150 lbs male who is taking 1000 mg Ethambutol daily for her Mycobacterium avium complex infection. What is the total dose per day that the patient is getting and respectively what would be his risk of developing ocular toxicity based on this dose?
- $\frac{150 \, lbs}{2.2 \, kg} = 68.18 \, kg \, of \, body \, weight$
- $*1000 \ mg \ x \frac{1}{68.18 \ kg} = 15 \ mg/kg/day$

 Table 1:
 Percentage risk range and mean risk of developing ocular toxicity

 based on daily dosing of Ethambutol in regards to milligrams per kilogram per

 day (mg/kg/day) based on available literature^{1,2,4,6,8,12-14,22,24,26,28-30,38-46}

Daily Dose	15 mg/kg/d ay	17.85 mg/kg/d ay	20 mg/kg/d ay	25 mg/kg/d ay	30-35 mg/kg/d ay	40-50 mg/kg /day	60-100 mg/kg/ day
Risk Range	0.62-2%	1.5%	3-6.3%	2.2-9.4%	15-18.6%	15- 33.3%	40-50%
Mean Risk	1.31%	1.5%	4.65%	5.8%	16.8%	24.15%	45%

Example #2:

 Example #2: A 100 lbs female who is taking 1600 mg Ethambutol daily for her Mycobacterium tuberculosis infection. What is the total dose per day that the patient is getting and respectively what would be her risk of developing ocular toxicity at this dose?

 $\Rightarrow \frac{100 \ lbs}{2.2 \ kg} = 45.45 \ kg$

- $\approx 1600 \ mg \ x \frac{1}{45.45 \ kg} = \ 35 \ mg/kg/day$
- $\diamond\,{\sim}16.8\%\,\mathrm{risk}$

Table 1: Percentage risk range and mean risk of developing ocular toxicity based on daily dosing of Ethambutol in regards to milligrams per kilogram per day (mg/kg/day) based on available literature^{1,2,4,6,8,12,14,22,24,26,28,30,38,46}

Daily Dose	15 mg/kg/d ay	17.85 mg/kg/d ay	20 mg/kg/d ay	25 mg/kg/d ay	30-35 mg/kg/d ay	40-50 mg/kg /day	60-100 mg/kg/ day
Risk Range	0.62-2%	1.5%	3-6.3%	2.2-9.4%	15-18.6%	15- 33.3%	40-50%
Mean Risk	1.31%	1.5%	4.65%	5.8%	16.8%	24.15%	45%

Molecular MOA...

- ⊗ <u>Pathology = Upregulation of RhoK:</u>
- ROCK-1 and ROCK-2 agonism leads to phosphorylation of myosin light chains leading to increased contractility of those fibers in TM → increased cell-to-cell adhesion in TM
 Reduced AH outflow

<u>Down-regulation:</u>

Neuroprotection???

- Increased blood flow (inhibition of Ca channels) \rightarrow vascular relaxatio
- Increased survival by 1/3 in one study of crush optic nerves in m
- TBD.

