Corneal Dystrophies and Degenerations: Diagnosis and Treatment

Louise A. Sclafani, OD, FAAO
AAO Diplomate, Cornea & Contact Lens

Goals
- Differentiate dystrophy vs. degeneration
- Review normal vs. abnormal
- Classify the condition by location
 - Layers of the cornea
 - Central vs. peripheral
- Determine appropriate treatment and present in order of complexity
 - Similar treatment for various conditions

Review the Layers of the Cornea
- Tear film: 7-11 μm
- Epithelium: 50 μm
- Epithelial BM: <128 nm
- Bowman: 8-14 μm
- Stroma: 500 μm
- "Dua Layer": 15 μm
- Descemet: 5-10 μm
- Endothelium: 5 μm

Corneal Dystrophy
- Rare conditions
- Slowly progressive, bilateral, central location
- Primary involvement of single corneal layer
- Variable penetration and severity
- No associated systemic or ocular disease
- No sex predilection.
- Onset by age 20, stabilize by age 40 (except Fuchs)
- Autosomal dominant (50%)

Corneal Dystrophy
- Epithelial
 - Maps/dot/fingerprint
 - Massman’s
- Subepithelial/Bowman’s
 - Reis-Bucklers Dystrophy (CDB 1)
 - Thiel-Behnke Honeycomb Dystrophy (CDB 2)
 - Subepithelial Mucinosis
- Endothelial
 - Fuchs’ dystrophy
 - CHED—congenital hereditary endothelial dystrophy
 - PPMD—posterior polymorphous dystrophy
- Stromal
 - Lattice Dystrophy
 - Granular Dystrophy
 - Avellino Dystrophy
 - Macular Dystrophy
 - Gelatinous Drop-Like Dystrophy
 - Schnyder Crystalline Dystrophy
 - Central Cloudy Dystrophy of Francois
 - Fleck Dystrophy
 - Cornea Farinata
 - Pre-Descemet’s Dystrophy
 - Posterior Amorphous Corneal Dystrophy
 - Congenital Hereditary Stromal Dystrophy
 - Primary Band Keratopathy
CORNEAL DEGENERATION

➢ Non-familial, late onset
➢ Asymmetric, unilateral, central or peripheral
➢ Changes to the tissue caused by inflammation, age, or systemic disease.
➢ Characterized by a deposition of material, a thinning of tissue, or vascularization

Corneal Degenerations

From Periphery to Center (arbitrary division)

➢ Arcus senilis
➢ Lipid keratopathy
➢ White limbal girdle of Vogt
➢ Senile furrow
➢ Terrien’s marginal degeneration
➢ Hassall-Henle bodies
➢ Calcific band keratopathy
➢ Calcareous degeneration
➢ Spheroidal degeneration
➢ Iron deposition
➢ Coats’ white ring
➢ Crocodile shagreen
➢ Corneal farinata
➢ Salzmann’s corneal degeneration
➢ Corneal keloids
➢ Corneal amyloid degeneration

EPITHELIUM

➢ 50 μm non-keratinized stratified squamous epithelium
➢ 5-10 layers central 8-10 peripheral
➢ Superficial layers have microvilli that attach tears.
➢ Exfoliation q 5-7 days
➢ Deeper layers (Basilar Columnar cells) have hemi-desmosomes
 • connect the epithelium to basement membrane which connects to Bowman’s Layer.
➢ First phase of wound healing occurs with migration of existing cells over the wound

EPITHELIAL BASEMENT MEMBRANE “DISORDER” EBMD

➢ Most common anterior corneal disorder
➢ DYS: inherited, single layer, bilateral
➢ DEG: Prevalent 43%, 25% unilat.,> 29y, trauma
➢ Abnormality of epithelial turnover, maturation, and production of BM and adhesion complexes
➢ Thickened BM ultimately weakens the epithelium and causes recurrent corneal erosion (RCE).

EBMD

➢ The basal cells produce abnormal finger-like projections that bend intraepithelialy and trap cells/debris that form cysts.
➢ MAPS: multi-lamination of BM and collagen
➢ DOTS: grey opacities, cysts
➢ FINGERPRINT: reduplication of BM
➢ AD: TGFBI/BIGH3 gene

SLX of EBMD

➢ Negative NaFL pattern and instantaneous TBUT
➢ No Rose Bengal Stain
➢ When Microcysts surface and erupt, + NaFL
➢ Asymptomatic vs. Variable degrees of Blur, diplopia, photophobia, dryness, FBS, or pain.
TREATMENT FOR EBMD

➢ Indicated if vision or comfort are compromised.
➢ Manage co-existing ocular surface disease
➢ Environment / diet / bedtime eyeshields
➢ Lubricants
➢ Punctal occlusion
➢ Bandage Contact Lens (BCL)
➢ Surgical: PTK

AT Containing Hyaluronic Acid HA

- Most common in Europe and Asia
- Higher concentration of Sodium Hyaluronate
- Strong ability to bind water
- Visco-elastic properties to stabilize tear layer
- Predominant glycosaminoglycan to appear at the wound site and aids in cell proliferation, migration and ultimate healing
- High MW HA = cohesive
- Low MW HA = dispersive

TREATMENT FOR EBMD/ABMD to Prevent Recurrent Erosion

➢ Avoid preservatives or surfactants
➢ Electrolytes nourish eye
➢ DED benefits from Hypo-osmotic drops
 Counteract the high salt contact of dry eyes
 Bland ointments help retain fluid on the eyes
➢ Edematous Corneas or Weak junctions that lead to RCE benefit from Hyper-osmotic agents
 Sodium Chloride vs. High Oncotic Pressure
 Muro 128: Solution (2-5%) vs. ointment (5%)
 Ung: comfort, > concentration
➢ Treat 6 weeks Solution /3-6mo ung
➢ Warm Packs: QID 2-3 weeks/shields
Autologous Serum Drops

- Utilizes patient’s own blood serum
- Blood is drawn and the serum is spun down and mixed with artificial tears. Devoid of cells and clot factors
- Replaces “personal” growth factors
- Replaces individualized antibodies
- Serum contains growth factors, fibrinectin, Vit. A and anti-proteases
- Requires blood donation 2-3 times a year $150-$300 Hospital/Litiets
- Consider 5-10% serum albumin drops qid instead

ANTI-INFLAMMATORY EFFECTS OF EFA

- WOMEN’S HEALTH STUDY
- Published 2005
- N > 32K
- Association of Low Dietary intake of ω3 and DED
- 30% reduction in risk 1/g/day
- Elevated Risk DED 15:1 when ω6/ω3
- When balance is off, it is associated with lipid abnormalities
- Lacrimal gland preventing apoptosis of the secretory epithelial cells

Caffeine is a non-selective competitive adenosine antagonist, that increases the level of acetylcholine, for the parasympathetic path... Acts on lacrimal gland to increase secretion

Protective against MRSA

ABSTRACT

Caffeine, probably the most widely consumed psychoactive substance, is claimed to have conflicting effects on lacrimal gland dynamics. The study sought to investigate the effect of orally ingested caffeine on tear secretion.

Methods. In an experimental, placebo-controlled, crossover experimental model, the effect of caffeine intake on tear secretion was studied in 40 healthy volunteers aged 20 to 26 years (mean ± SD, 24 ± 2.5 years). Participants were randomly assigned into two groups. A and B, to receive two different treatments in two sessions. Subjacts in group A were exposed to 10 mg/kg body weight caffeine dissolved in 200 mL of water on the first visit, whereas those in group B were exposed to 200 mL of water. On the second visit, however, the order of treatment was reversed. Subjacts’ 3 scores were measured immediately at 45, 90, 135, and 180 minutes after treatment. The baseline lacrimal scores were compared with the scores at 180 minutes after the caffeine

Dry Eye Disease Management

DEWS II

Superficial Punctate Keratitis of Thygeson (SPKT)

- Chronic, usually bilateral disorder characterized by focal epithelial lesions favoring central visual axis
- Mean age 29 (2 to 70)
- Long duration with remissions and exacerbations
- Asymptomatic (esp. later) vs. FBS, photophobia
- Corneal sensation not affected although occasional hypo-aesthesia... /o HSV
SPKT

- Average of 15-20 lesions
 - (1 to 50)
- Lesions have +NaFl/RB staining and are elevated during active disease process
- Each lesion comprised of multiple lesions
- Change position over time
- No stromal involvement
- Conjunctiva is not inflamed

Lesions are round and show negative staining

Conjunctiva: usually not inflamed unless during the developmental stage: 1-2 wks

RPS Adeno Detector™ Rapid Pathogen Screen

Collecting the Sample

Dab the sampling pad inside the lower eyelid (palpebral conjunctiva) 4 – 6 times. Allow the sampling pad to rest against the conjunctiva (membrane on inside of the eyelid) for an additional 3 seconds to ensure saturation of the sampling pad with eye fluid.

Etiology of SPKT Unknown

- Possibly Viral due to latency, recurrence, lesion appearance, duration
- PCR testing proved that it is NOT HSV 1, HSV 2, VZV or Adenovirus
- Still investigating HPV since both have minimal inflammation
- Prolonged SPKT Associated with Salzmans Nodular Degeneration
- Suggested association with eczema, urticaria, asthma
- HLA-DW3 and DR3 association: gluten sensitive, DM2, Lupus, Graves

Treatment for SPKT

- Lubricants for comfort
- BCL to smooth surface
- Good response to steroids however needs long taper and can prolong the course or worse. Confident DDX...
- Antivirals?
- Cyclosporine
 - Reinhard showed 70% suppression with 2%
- Lack of response to systemic or topical AB, debridement/ cautery of tissue
5 CHARACTERISTICS OF THYGESONS

1. Chronic, usually bilateral disorder characterized by central focal epithelial lesions and no stromal involvement
2. Long duration with remissions/exacerbations
3. Eventual Healing without scars
4. Lack or response to AB treatment
5. Striking response to steroid TX

MEESMAN’S DYSTROPHY

Diagnosed within first year of life
A “peculiar” substance is produced which thickens the BM.
Numerous epithelial vesicles that extend to limbus
- Contain debris, cells, GAG
No scarring, Photophobia, Irritation
May have slight decrease in VA
CLS are not contraindicated and may be therapeutic when rupturing
LISCH: whorl-shaped clusters

Diagnosed within first year of life
A “peculiar” substance is produced which thickens the BM.
Numerous epithelial vesicles that extend to limbus
- Contain debris, cells, GAG
No scarring, Photophobia, Irritation
May have slight decrease in VA
CLS are not contraindicated and may be therapeutic when rupturing
LISCH: whorl-shaped clusters

RECURRENT CORNEAL EROSION

Traumatic erosions due to thickened BM with poor hemi-desmosomal attachments.
May result from incomplete healing following trauma
Associated with EBMD (50%) or Stromal Dystrophies esp. Lattice

Onset in the am due to edema or shearing effects
Symptoms may be more severe than it appears
Epithelial loss surrounded by pooling and loose ends

ACTIVE
- Aggressive corneal abrasion TX = BCL heals slower

PROPHYLAXIS
- Lubricants/ Hyperosmotic agents
- Long-term BCL, Amniotic Tissue, MMP inhibitors

SURGICAL
- Debridement
- Anterior Stromal Puncture
- PTK with PRK

Treatment for RCE
TREATMENT OF RCE

PROPHYLAXIS
➢ Patients with RCE show a chronic increased level of metallo-proteinase enzymes (MMP 2&9) which may dissolve the basement membrane and fibrils due to inadequate neutralization. TX = inhibit MMP
➢ Doxycycline: oral, 50mg BID
 • 2 months treatment time. Reduced MMP 70%.
➢ Topical Steroids
 • Pred Forte, FML, Lotemax, TID, 2-3 weeks.
➢ No recurrences in 21 months.

BANDAGE CONTACT LENSES
➢ To aid in healing by offering protection
➢ To provide comfort for decompensating corneas with erupting microcysts
➢ To aid in dehydration
➢ To produce a more regular refracting surface
➢ To aid in drug delivery
➢ To reduce inflammation

Amniotic Membrane Grafts (AMG)
"ACTIVE" treatment over BCL

Biotissue-Prokera, Amniograft, & Amnioguard
IOP Ophthalmics-Ambiodisk

Amniotic Membrane Grafts (AMG) Actions
1. Reduces inflammation
2. Inhibits scarring
3. Inhibits angiogenesis
4. Promotes epithelialization
5. Possesses anti-microbial properties
6. Restoration of lost corneal thickness*

TREATMENT OPTIONS
TARSORRHAPHY
➢ Surgically close the palpebral fissure by suturing the superior and inferior lids at the lateral aspect

STAMLER LID SPLINT
➢ Adhesive on one side with enough rigidity on the other to hold the lids in the closed position

TAPESORRHAPHY
➢ Tapederm

AMNIOTIC TISSUE GRAFTS
➢ Allow for use of meds and examination
Treatment for RCE

➢ ACTIVE
 - Aggressive corneal abrasion TX = BCL heals slower

➢ PROPHYLAXIS
 - Lubricants/ Hyperosmotic agents
 - Long-term BCL, Amniotic Tissue, MMP inhibitors

➢ SURGICAL
 - Debridement
 - Anterior Stromal Puncture
 - PTK with PRK

CORNEAL DEBRIDEMENT

➢ Soften epithelium
 - 1-2 gtt topical anesthetic
 - q 15-30 seconds for 2-3 minutes

➢ Use cotton swab, spatula, spud or jewelers forceps

➢ Remove flaps by pulling edges toward center

➢ Don’t pull directly up or out

➢ Remove flaps down to tight, firm edges.

➢ Tx abrasion (>50-100%)
 - Recurrence Rate 18%

ANTERIOR STROMA MICROPUNCTURE

➢ Disturb Bowman’s Layer to promote tighter adhesion and stimulate cornea to produce functional BM complexes

➢ Topical anesthetic and a 27g cannula: use forceps to bend needle to avoid puncture

➢ Closely spaced (.5mm) punctures damaged/adjacent
 - Anterior Stroma: 100-150 μ
 - Apply tangential force
 - Avoid Visual axis since minimal scarring can occur
 - RR 40% Yag 80% success

PTK

Phototherapeutic Keratectomy
Combined PRK
Wavefront Technology

Bowman’s Layer

➢ Acellular modified layer of anterior stroma

➢ Type 1 collagen fibers randomly arranged

➢ Pores for corneal nerves to pass

➢ Fxn? Not found in many species yet good vision and normal epithelial-stroma junctions.

➢ Not replaced however when damaged, causes significant opacification which effects VA

REIS-BUCKLER DYSTROPHY

➢ Bilateral, symmetric, AD, by age 5

➢ Bowman’s layer is obliterated and replaced with randomly arranged regular collagen that thickens.

➢ Linear, ring-like or “Honey comb”

➢ Marked VA loss due to superficial stromal haze or topographical changes from elevation of tissue

➢ Painful if recurrent erosions occur.

➢ TX: PKP or LK but may recur
REIS-BUCKLER DYSTROPHY

- Dystrophy or Degeneration
- AKA: Anterior Crocodile Shagreen
- Breaks in Bowman’s that appear like central grey polygonal opacities with clear spaces.
- Blanches with limbal pressure.
- Asymptomatic

BAND KERATOPATHY DEGENERATION

- Deposition of Calcium salts in Bowman’s layer
- Located interpalpebral region
- History of uveitis, renal failure, prolonged use of miotics, syphilis, interstitial keratitis, hyperparathyroidism
- TX: Chelation with EDTA 1%
- TX: Therapeutic CL

ANTERIOR MOSAIC

- Dystrophy or Degeneration
- AKA: Anterior Crocodile Shagreen
- Breaks in Bowman’s that appear like central grey polygonal opacities with clear spaces.
- Blanches with limbal pressure.
- Asymptomatic

CASE: Eye vs. Silicone oil

- Black Underprint: color is applied to a dark background to mask and make a scar more uniform. This darkens and mutes the overlaid color.
- Store in glass vials
- 53% H20 to maintain dye

EDTA Treatment

- TX: Chelation with EDTA 1%
- TX: Therapeutic CL

Treatment: Cosmetic Contact Lens

- Black Underprint: color is applied to a dark background to mask and make a scar more uniform. This darkens and mutes the overlaid color.
- Store in glass vials
- 53% H20 to maintain dye
Occluder Contact Lens for Band K

SALZMANN’S NODULAR DEGENERATION

- Bluish, superficial nodular elevations
- Inflammatory/Non-inflammatory event that exposes the cornea and results in excess COLLAGEN plaques that replace BOWMANS
- Post-chronic-keratitis
- Asymptomatic to very painful and sight threatening depending on location and severity
- TX: BCL/AB/NSAID, PTK, PKP

STROMAL DYSTROPHYS

- 90% of corneal thickness
- 22%: Comprised of TYPE 1 collagenous lamellae interspersed with keratocytes and ground substance(proteoglycans, glycoproteins, serum)
- GAGS: affect hydration, thickness, transparency
- 78%: rest is water.
- Abnormal Substance found within the cells or fibrils that have distinct histological-stains

MACULAR DYSTROPHY

- Clouding due to build-up of muco-polysaccharides
- Begins centrally & superficially then extends limb to limb thru all layers
- Thinning, no clear spaces between
- Primary involvement of the endothelium: guttata
- Begins in 1st decade of life: aggressive causing early & severe VA loss
- Predominant in Virginia area
- Autosomal recessive
- TX: PKP/DALK
- Macular / Mucopolysaccharide / Alcian Blue

Name of Dystrophy Name of Deposition Pathology Stain

- Marilyn Monroe Always
- Gets Her Man
- Los Angeles County
- Southern California Ocean
GRANULAR DYSTROPHY

- Central, anterior to mid-stromal deposits of Hyaline
- Discreet white spots (translucent) to powdery rings
- Clear areas between lesions in early years
- Erosions can break thru BM.
- Autosomal dominant w/ complete penetrance*

 Granular/Hyaline/Masson Trichrome

GRANULAR DYSTROPHY TREATMENT

- Pinhole effect may maintain VA (20/20) until the lesions coalesce and reduce VA=20/200.
- PKP was only treatment and recurrences were common

- Present treatment includes PTK/DALK and BCL:
 - Smooth epithelial surface to treat monocular diplopia
 - Pain management following PTK or erosions
 - Induced anisometropia
 - Spectacle distortions of high plus lens

PTK Treatment for GRANULAR

Contact Lens Fit for Granular

- C/O anisometropia/haze
- RE +7.50 – 2.00 x 010 20/30
- LE +3.25 – 2.25 x 170 20/30
- CL FIT
 - DIL +3.50 8.08/11.2 20/25
 - PV pl-1.75 x 180
- Refit OD at 4 months pg
 - Hydrasoft Options
 - +8.75 -2.00 x 010 20/25 !!!
LATTICE DYSTROPHY

- Branching refractile filaments of AMYLOID
- Symptoms occur around 20 yo
- RCE are common
- Resultant scars and late intervening haze can blur VA
- Lines thicken with age & penetrate deeper layers
- Autosomal Dom/Recessive
- TX: DALK, PKP
- Lattice / Amyloid / Congo Red

TYPES OF LATTICE DYSTROPHYS

- **TYPE 1**
 - Poor VA by age 40-60
- **TYPE 2**
 - Merotoja syndrome
 - Bilateral Facial palsy, skin thickens, Depressed brows, prominent
 - VA loss >65y
- **TYPE 3**
 - Floppy ears, protruding lips, Auto-R
 - Larger deposits, mid stroma, no RCE
 - VA loss > 60 y

CASE EXAM FINDINGS

- Presents to ER with abrasion
- At 3 day follow-up
- SLX: fine discreet lines in the mid-peripheral stroma with translucent white spots. VA 20/20

CENTRAL CRystalline dystrophy of Snyder

- Deposits of cholesterol crystals in anterior stroma
- Premature peripheral arcus
- Vision is generally good
- Usually normal serum lipid profile: +/- hyperlipidemia
- Expressivity is variable
- B120 gene on chromosome 1 is responsible for lipid metabolism and transport
- Snyder / Cholesterol / Qi
CENTRAL CRYSTALLINE DYSTROPHY OF SNYDER

➢ Vs. Secondary Lipid Keratopathy: Cholesterol and Lipid deposition as a result of long-standing deep NEO 2 to HSV/HSK.
➢ TX of NEO via topical steroids, photocoag. of vessel, LKP/PKP.

ARCUS SENILIS

➢ Effects >60% population between 40-60 years.
➢ Peripheral lipid deposition.
➢ Located anterior to Descemet’s layer and in Bowman’s layer.
➢ Juvenile form usually represents hyperlipidemia.
➢ Be suspicious of carotid disease if this is present to a greater degree in one eye.

WHITE LIMBAL GIRDLE OF VOGT

➢ Effects > 50% population between 40-60.
➢ With/Without clear zone.
➢ Represents subepithelial degeneration and sometimes calcium deposition.
➢ Does not affect visual acuity.
➢ Located in the horizontal meridian.

POSTERIOR EMBRYOTOXIN

➢ Extremely prominent ring of Schwalbe.
➢ Eye is normal but may be associated with corectopia, aniridia, or corneal conditions that are part of systemic syndromes.

Restasis® Allergan: (Cyclosporine Ophthalmic Emulsion 0.05%)

➢ Indicated for patients who do not get relief with compresses and lubricants.
➢ Restores tear production.
➢ Increases goblet cells.
➢ Excellent safety profile.
➢ BID dosing.
➢ Mild stinging.

OFF LABEL USES
➢ EBMD
➢ Thygesons Dx
➢ Blepharitis
➢ Refractive Surgery
➢ Graft vs. Host in BMT
➢ Viral Conjunctivitis
➢ Chronic Uveitis.

Shire LIFITEGRAST = XiIDRA

➢ Preservative-free topical eye solution made up of a small-molecule integrin antagonist.
➢ First-in-class molecule that inhibits T-cell inflammation by blocking the binding of 2 key cellular surface proteins (LFA-1 and ICAM-1) that mediate the chronic inflammatory cascade.
➢ Apr 15. FDA accepts lifitegrast for priority review reducing assessment time from the standard 12 months to just eight months. [10]
➢ ADHD and Hunter Syndrome (GAGS)
Normal Changes to the Endothelium

➢ Descemet’s layer thickens from 3-17μ
➢ There is a decrease in the # of endothelial cells
 • from 3500 cells/mm² to 1200
 • this single layer spreads out: lacks mitosis
➢ High density mitochondria: 90% pump
➢ Lenses produce reversible polymegathism

Abnormal Changes to the Endothelium

➢ Endothelial cells become more irregular = Polymorphism
➢ Cells secrete collagen towards Descemet’s causing multilamination = guttata
➢ This breaks down the barrier function and results in stromal and epithelial edema

POSTERIOR POLYMORPHOUS DYSTROPHY- PPMD

➢ Isolated to coalescent vesicles that intervene between normal endothelial cells.
➢ Areas of normal or thickened Descemet’s membrane representing a collagenase material
➢ These vesicles can lead to stromal edema.
➢ Association with keratoconus

POSTERIOR POLYMORPHOUS DYSTROPHY- PPMD

➢ Can be present at birth
➢ Wide variety of expression
 • Non-symptomatic
 • Grouped vesicles cause blur
 • Stromal edema
 • Correctopia and irido-corneal adhesions resulting in glaucoma if they enter TM

FUCH’S DYSTROPHY

➢ Bilateral, asymmetric, begins in 5th or 6th decade
➢ More predominant in women (3x)
➢ Initially pigment dusting
➢ Non-symptomatic

FUCH’S DYSTROPHY STAGE 1

Guttata represent clear, vesicular endothelial secretions that project into the potential space between the endothelium and Descemet’s
FUCH’S DYSTROPHY STAGE 2

- Guttata interrupt the normal pumping mechanism = edema
- Edema begins around Descemet’s and Bowman’s layers and then spreads the entire thickness.
- Pt. experience glare/hazy VA
- Bullae appear: they reduce vision and cause pain when they rupture, especially in am

FUCH’S DYSTROPHY STAGE 3

- Edema is reduced but sub-epithelial connective tissue grows and causes reduced vision.
- Patient is comfortable due to reduced corneal sensitivity.
- Elevated IOP, peripheral neovascularization, and corneal erosions.

FUCH’S DYSTROPHY TREATMENT

- Hypertonic solutions to draw fluid out 4-6 x
 - Sodium Chloride
 - Muro 128 (2% or 5%) solution, 5% ointment-PF
 - Fresh Kote
- BCL to aid in comfort for ruptured bullae
- Hair Dryer in the am
- Lubricants for comfort
- Lower IOP
- Conjunctival flap
- Corneal transplant to restore vision: PKP vs. DSEK

PKP vs. DSEK

DSEK: Descemet Stripping Endothelial Keratoplasty

Faster visual recovery
Less astigmatism created since there are no sutures
Eye is much stronger and more resistant to injury since only the diseased tissue rather than the entire cornea
Surgery time is quicker
Chance of rejection is reduced
Procedure can be combined with cataract surgery
VA 20/30-20/40
1-2 D Hyperopic Shift, thicker
KERATOCONUS

“Keratoconus is a clinical term to describe a condition in which the cornea assumes a conical shape because of thinning and protrusion.”

Keratoconus - Keratometry

- Initially, mires get small and then there is a lack of parallelism
- Expand perimeters by use of +1.25 SPH and add 7 D to your reading
- Steepening begins infero-temporally and progresses clockwise
- TOPOGRAPHY - more sensitive
- PLACIDO RINGS - get closer

RETINOSCOPY

- Scissors Reflex
- Against motion that breaks apart
- Represents multiple refractive powers within the optic zone

Topography of Keratoconus

PSEUDOKERATOCONUS

- Corneal warpage topography can mimic KC
- Repeat topography must be performed and a measurable change would indicate pseudo-KC
- Evaluation of elevation maps at steep zone:
- Predicts the elevation or depression of the cornea if the best fit sphere was on cornea
ELEVATION MAP DIFFERENTIATES KERATOCONUS vs WARPAGE

KERATOCONUS-SLIT LAMP FINDINGS
- Fleischer Ring
- Vogt’s Striae
- Stromal thinning
- Stromal scars
- Swirl-like pattern
- Enlarged corneal nerves
- Acute hydrops

WHORL-KERATOPATHY

FLEISCHER RING

abr upt change in curvature 50%

VOGTS’S STRIA (1st Sign)

STROMAL SCAR

CLEK showed
Overall 13% had scars
K > 52 38% scarred
43% of flat fits scarred
26% of steep fits scarred
8% ↑ with each hour WT
↑ scar w/ stain, ring, age, CL (2 fold), ↑FDACI.
EXTERNAL FINDINGS

MUNSON'S SIGN

RIZZUTIS SIGN

CORNEAL HYDROPS

5%

PELLUCID MARGINAL DEGENERATION

- 20-40yo, no gender preference, slow progression
- Thinning occurs below the steep curvature
- Stromal thinning is concentric to the lower limbus and runs from 4-8:00, 1-2mm wide
- Clear, epithelialized, and non-vascularized.
- Absence of lipid: ddx from Mooren's or Terrien's
- Vertical stress lines and hydrops can occur
- BEER-BELLY CORNEA

PELLUCID MARGINAL DEGENERATION

PMD vs. KCN

PROGNOSIS FOR PELLUCID

- Lens fitting is difficult due to inferior apex
- Central rings show AR/ Inferior rings show WR
- Fitting flat causes bearing and on K (steep) causes too much seal off
- Larger lenses needed due to low positioning/glare
- CAREFUL MONITORING
- Poor SX Candidate
KERATO GLOBUS

- A diffuse thinning of the cornea to 1/3-1/5 the normal thickness
- It is noted early in life and progression is minimal
- Associated with Ehlers-Danlos Syndrome and Leber's Congenital Amaurosis
- Acute hydrops

POSTERIOR KERATOCONUS

- Rare developmental defect
- Focal indentations of the posterior cornea with overlying stromal scarring
- Anterior curve not affected
- Descemets' membrane and endothelium are always present but may be abnormal in the area of thinning

POSTERIOR KERATOCONUS

- Associated Ocular Disease
 - Lens abnormalities, choroidal or retinal sclerosis, PPMD, retinal coloboma, optic nerve hypoplasia, ptosis, iron rings, and posterior synechia
- Systemic Associations
 - Mental retardation, webbed neck, hypertelorism, short stature, superior placed lateral canthi, genitourinary abnormalities

POSTERIOR KERATOCONUS

Thank you for your attention