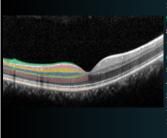
OCT Evaluation of the Retina and Optic Nerve

Alison Bozung, OD, FAAO Rob Wooldridge, OD, FAAO

Disclo\$ure


- Bozung: No relevant financial relationships with commercial interests
- Wooldridge: Speakers Bureau/honoraria from Aerie, Alcon, Allergan, Bausch & Lomb, Biotissue, Centervue, Oculus, Optovue, Reichert, Synemed

OCT Evaluation of the Retina

Alison Bozung, OD, FAAO

Retina Refresher

- 10. (ILM) Internal Limiting Membrane
- 9. (NFL) Nerve Fiber Layer
- 8. (GCL) Ganglion Cell Layer
- . (IPL) Inner Plexiform Layer
- . (INL) Inner Nuclear Layer . (OPL) Outer Plexifor<u>m Layer</u>
- 4. (ONL) Outer Nuclear Layer
- 3. (ELM) External Limiting Membrane
- 2. (IS/OS or PIL) Inner/Outer Segment
- 1. (RPE) Retina Pigmented Epithelium

Topics

- 1. Where is the fluid
- 2. Common entities
- 3. Masqueraders
- 4. Going below and beyond
- 5. Take a second look

Topics

- 1. Where is the fluid
- Common entities
- . Masqueraders
- 4. Going below and beyond
- 5. Take a second look

1. Where is the Fluid?

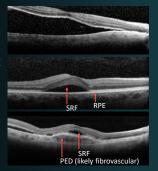
Describing fluid location

A. Sub-RPE


B. Subretinal

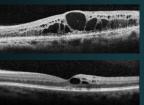
C. Intraretinal

ie.


A. Sub-RPE Fluid

- Key Features:
 - Hyporeflective space
 - Directly below RPE
 - Often "bubble-like", but can be irregular
- Aka Pigment epithelial detachment (PED)

B. Subretinal Fluid (SRF)

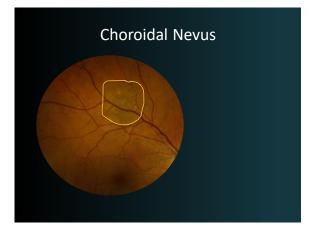

- Key Features:
 - Hyporeflective space
 - Directly above RPE

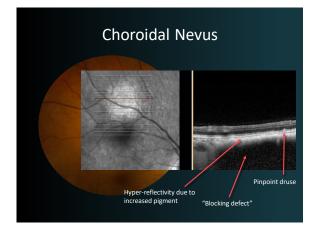
C. Intraretinal Fluid

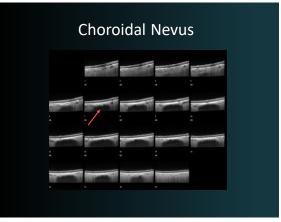
Key Features:

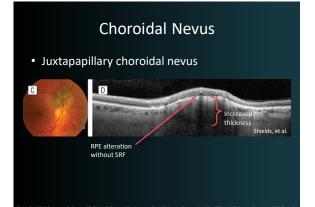
- Rounded,
- hyporeflective spaces – Within central retinal layers
- Aka Cystoid Macular Edema (CME)

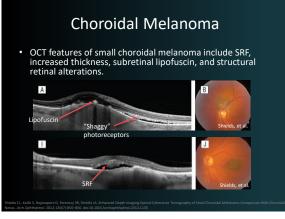
Topics

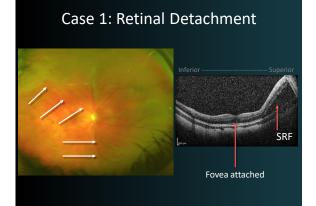

- 1. Where is the fluid
- 2. Common entities
- 3. Masqueraders
- 4. Going below and beyond
- 5. Take a second look


2. Common entities


- Retina
 - Choroidal nevus
 - Retinal detachment
- Macula
 - Age related macular degeneration
 - Macular edema
 - Vitreoretinal interface
 - Epiretinal membrane
 - Macular hole

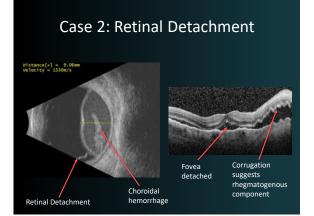

Choroidal Nevus


- Common features on OCT
 - Increased choroidal hyperreflectivity
 - Posterior blocking defect
 - Overlying drusen
 - Minimal thickness

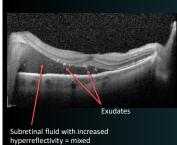

Retinal Detachment

- Common features on OCT
 - Extensive subretinal fluid
 - Flat or corrugated retina
 - Intact RPE/Bruchs complex

Case 1: Retinal Detachment


- 19 yo male
 1 day of flashes, floaters, and vision loss OD
- Ophthalmic history:
 - Congenital cataract OU
 - PCIOL OD, Aphakia OS
 - Nystagmus
 - GlaucomaHSVK OD
- BCVA OD 20/70 → 20/200
- Macula on or off?

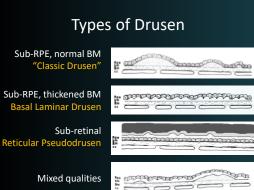
Case 2: Retinal Detachment


- 76 yo male
- 1 week vision loss OD
- Ophthalmic history:
 PCIOL OD, NSC OS
- Medical history:
 CAD, COPD, HTN
 Clopidogrel, ASA 325mg
-
- Macula on or off

Case 3: Retinal Detachment

Case 3: Retinal Detachment

hemorrhage

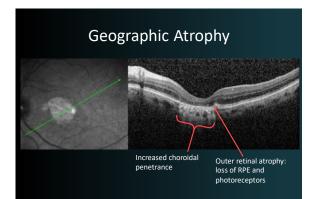

Peripheral exudative

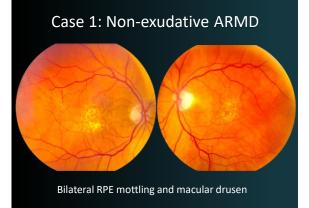
- hemorrhagic chorioretinopathy (PEHCR)
- Bilateral peripheral degenerative retinal condition
- Caucasians >70yoa
- Often referred to "Pseudomelanoma" due to dome-shaped exudative lesion

 Ultrasound necessary

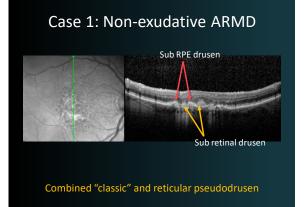
Age Related Macular Degeneration

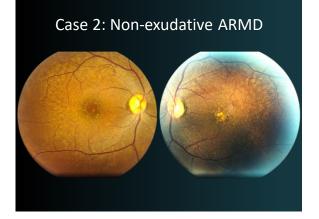
- Common features on OCT
 - Drusen
 - Drusenoid PEDs
 - Fibrovascular PEDs
 - Geographic atrophy
 - Subretinal fluid

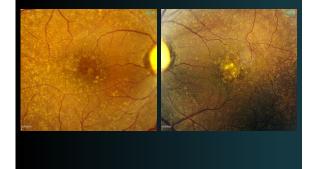

Types of Drusen

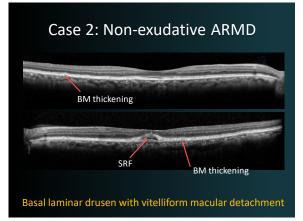

Sub-RPE, normal BM "Classic Drusen"

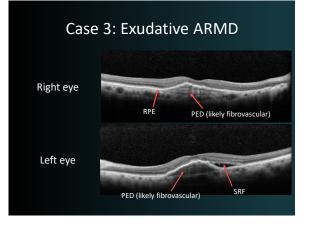
Sub-RPE, thickened BM Basal Laminar Drusen


Sub-retinal Reticular Pseudodrusen

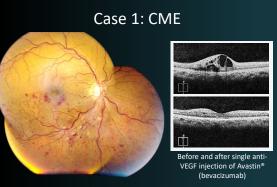




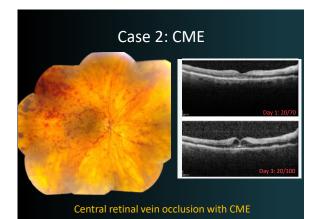




Case 2: Non-exudative ARMD

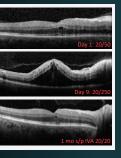

Cystoid Macular Edema

Common features on OCT


- Rounded hyporeflective spaces
- Typically located in outer plexiform layer

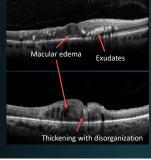
Common etiologies

- Cataract surgery
- Diabetes
- Retinal vein occlusion
- Posterior uveitis



Hemicentral retinal vein occlusion with CME

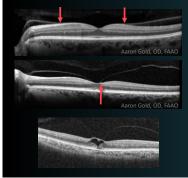
Case 3: CME



Central retinal vein occlusion with CME

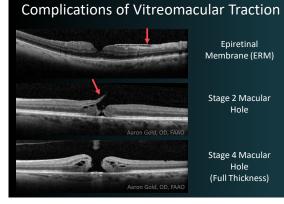
CME: Diabetic Retinopathy

• OCT findings:


- Exudates
- Diffuse thickening
- Disorganized retinal structure
- Aka Diabetic macular edema (DME)

Vitreomacular Interface

- Vitreomacular Adhesion (VMA)
 - Posterior hyaloid attachment to macula
 - NO distortion of macular contour
 - Asymptomatic
- Vitreomacular Traction (VMT)
 - Posterior hyaloid attachment to macula
 - Change in foveal contour or retinal morphology
 i.e. surface distortion, pseudocysts, elevation of retina from RPE
 - May benefit from Jetrea[®] (ocriplasmin, Thrombogenics)


Vitreomacular Interface

Vitreomacular Adhesion (VMA)

Vitreomacular Traction (VMT)

Vitreomacular Traction (VMT) with pseudocyst

Epiretinal Membrane (ERM)

Stage 2 Macular Hole

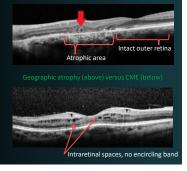
Stage 4 Macular Hole (Full Thickness)

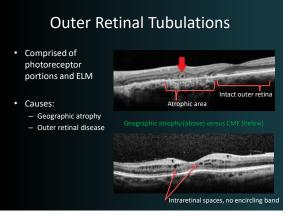
Complications of Vitreomacular Traction

Topics

- 1. Where is the fluid
- 3. Masqueraders
- 4. Going below and beyond
- 5. Take a second look

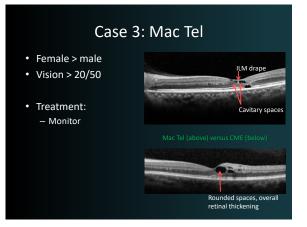
3. Masqueraders of leakage

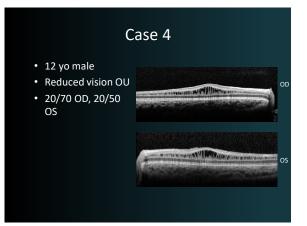

- Similar appearances, but underlying process differs
- True leakage is a VEGF-mediated process
- Masqueraders are typically *degenerative processes*
- Why does it matter??
 - Masqueraders typically do not respond to anti-VEGF injections

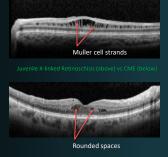

2. Masqueraders of leakage

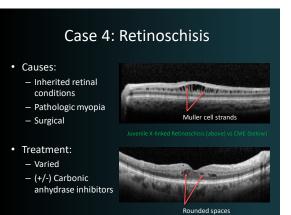
- Common degenerative mimickers
 - Outer retinal tubulations (ORTs)
 - Macular telangiectasia (Mac Tel)
 - Retinoschisis

Outer Retinal Tubulations


- Key Features:
 - Bright-banded encircling ring
 - Located in outer retina




<section-header><section-header><list-item><list-item><list-item><complex-block>



Case 4: Retinoschisis

- Key Features:
 - Elongated spaces
 - Inner/middle retina
 - Strand-like separations

Topics

- 1. Where is the fluid
- 2. Common entities
- 3. Masqueraders
- 4. Going below and beyond
- 5. Take a second look

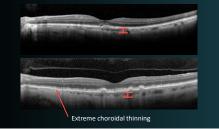
<section-header><text><text><text><text>

Choroidal Thinning

- Thinning with age
- Pathologic myopia
- AMD

Choroidal Thinning

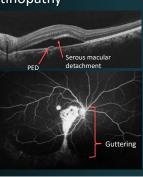
Pathologic Myopia


 Increased axial length

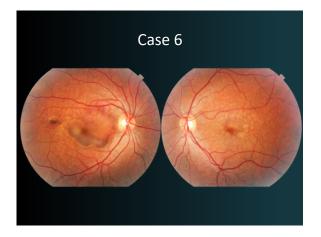
Choroidal Thinning

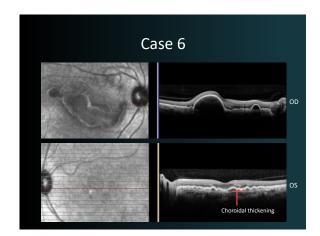
AMD

Rate of thinning surpasses age-related controls

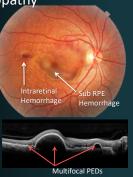

Choroidal Thickening

- Central Serous (CSCR)
- Polypoidal choroidal vasculopathy (PCV)




Case 5: Central Serous Chorioretinopathy

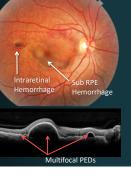
- Chronic signs
 - Pigmentary changes
 - "Guttering"
- Treatment
 - Discontinue steroids
 - Monitor



Case 6: Polypoidal Choroidal Vasculopathy

• Key Features:

 Multifocal, hemorrhagic PEDs

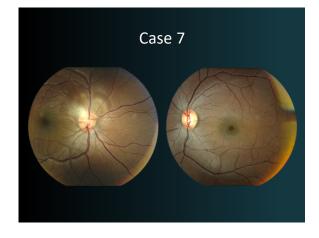

— (+/-) SRF

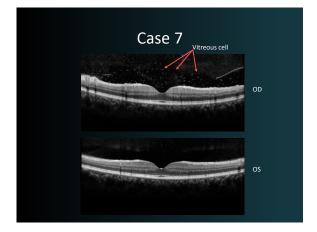
Case 6: Polypoidal Choroidal Vasculopathy

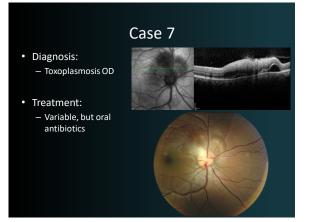
- ICG remains "classic" imaging technique

 Choroidal polyps
- Treatment:
 - Anti-VEGF
 - PDT
 - Combined PDT + Anti-VEGF*

Topics


- 1. Where is the fluid
- 2. Common entities
- 3. Masqueraders
- 4. Going below and beyond
- 5. Take a second look


5. Take a Second Look


• How does what we look for guide what we see?

Case 7

- 27 yo African female
- Blurred vision x 2 weeks OD
- Mild eye pain and photophobia OD

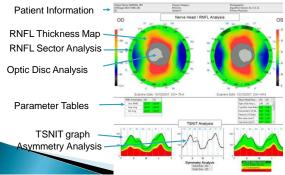
Case 8: Presumed Ocular Histoplasmosis Syndrome

- 32 yo white male
- Longstanding visual decrease OS

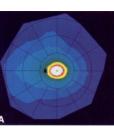
Case 8: Presumed Ocular Histoplasmosis Syndrome

- PPA and punched out lesions OU
- Macular scar OS

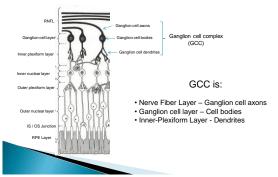
Usually, it doesn't take us long to figure out what's wrong..



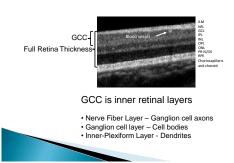
..but don't let your initial glance fool you.

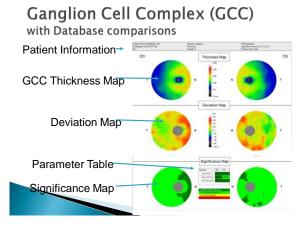


Nerve Head Map (NHM4)


Macular Ganglion cell density

•50% of ganglion cells located in central 4.5mm • Peak ganglion cell density is 15,000 cells/mm² in macula(white region) •GCC map covers central 6mm area




Topography of Ganglion Cells in Human Retina CHRISTINE A. CURCIO AND KIMBERLY A. ALLEN RE JOURNAL OF COMPARATIVE NEUROLOGY 300-5-25

Retinal Ganglion Cells extend through three retinal layers

Imaging the GCC

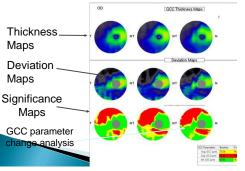
Diagnostic Accuracy: GCC vs FD OCT RNFL with RTVue

- Rao et al. found GCC had similar accuracy levels as FD RNFL (AROC = 0.81 for GCC vs 0.88 for RNFL)
- > Seong et al. found similar results (AROC = 0.95 for GCC and 0.97 for RNFL)
- Kim et al. found AROC values were higher for RNFL vs GCC in a group of advanced glaucoma patients (AROC = 0.92 for GC vs 0.96 for RNFL), but GCC values were higher than RNFL in a group of early glaucoma patients (AROC = 0.83 for GCC vs 0.78 for RNFL)

Rao HL, Zangwill LM, Weinreb RN et al. Ophthalmology 2010; in press. Seong M, Sung KR, Choi EH, et al. Invest Ophthalmol Vis Sci 2010; 51:1446-1452. Kim NR, Lee ES, Sung GJ, et al. Invest Ophthalmol Vis Sci 2010; in press

RTVue FD OCT: GCC vs Disc vs RNFL

- Huang et al. compared the diagnostic accuracy for GCC, optic disc, and RNFL from the RTVue
- AROC for RNFL was highest (AROC = 0.92), with GCC second (AROC = 0.86), and vertical C/D ratio a close third (AROC = 0.854)
- They found the accuracy improved when they combined all three structures in an LDF (AROC = 0.97)


Ability of Fourier-domain OCT to Detect GCC Atrophy in Glaucoma Patients

- 113 patients with different stages of glaucoma; 30 normals
- Imaged NFL and GCC with Optovue RTVue-100
- Conclusions: GCC and NFL thickness measurements performed by FD-OCT showed high diagnostic ability in detecting glaucoma. Mean thickness values can be determined for each glaucoma stage.

Glaucoma Progression Analysis

(GCC of stable glaucomatous eye)

Age Effects on NFL and GCC

- Studied longitudinal (4 years) and cross sectional age and IOP effects on 192 normals (40-75yo)
- > NFL thickness decreased 0.14 +/- 0.07 um per year (P = 0.04)
- \blacktriangleright NFL was 0.21 +/- 0.06 um thinner (P < 0.001).
- > GCC thickness decreased 0.25 +/- 0.05 um per year (P < 0.001)
- \triangleright GCC thickness was 0.17 +/- 0.05 um thinner per year of baseline age (P < 0.001)
- Equivalent to 0.2% per year
- IOP had no effect on rate of thinning

World Glaucoma Association

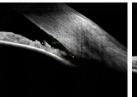
Angle Closure
Angle Closure
Angle Closure
Angle Closure
Angle Closure
Claucoma Screening
Coular Blood Flow 2006
Medical Treatment
Progression
Childhood Glaucoma
Diagnosis of POAG 2013

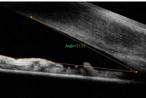
Optic Nerve Head Structure

- Clinical evaluation and documentation of the optic nerve head is essential for the diagnosis and the monitoring of glaucoma.
- Clinical diagnosis of glaucoma is predicated on the detection of a thinned RNFL and narrowed neuroretinal rim.
- These features often appear first in the supero- or inferotemporal quadrants.

Disc Rim, Nerve Fiber Layer (RNFL)

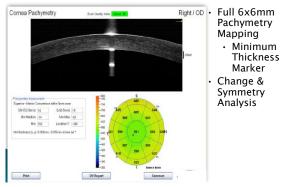
- Detecting progressive glaucomatous RNFL thinning and neuroretinal rim narrowing are the best currently available gold standards for glaucoma diagnosis.
 - Disease-related damaged should be differentiated from age-related change

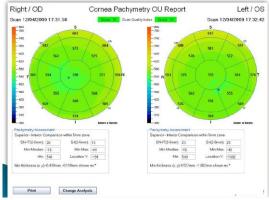



OCT

- RNFL is the most clinically useful parameter of the ones currently available with OCT.
- Macular RGC loss in glaucoma also can be detected by OCT.
- RNFL thickness and RGC loss are complementary

OCT Angle



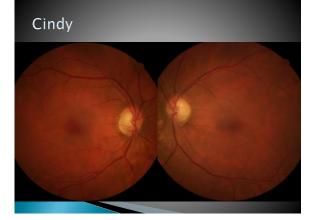

Pre-LPI

Post-LPI

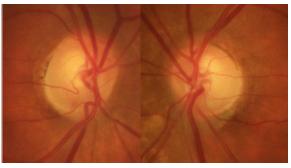
CORNEA

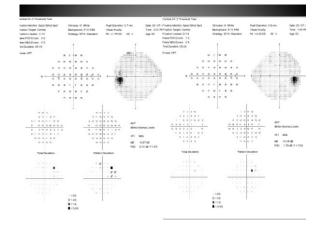
CORNEA

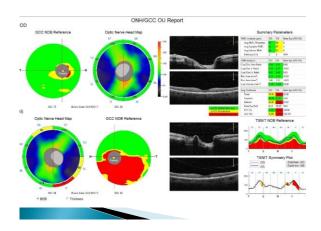
Glaucoma

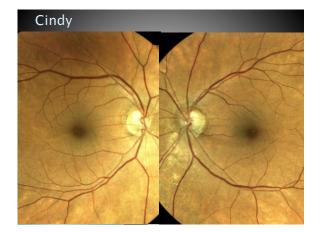

- Mild
- Moderate
- Severe

Cindy

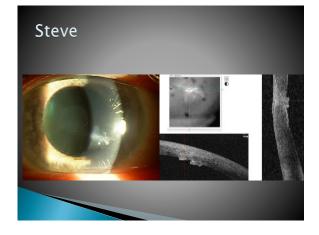

- > 62yoF referred as glaucoma suspect
- S/P LASIK OD only
- VAcc 20/15 OU
- GAT R 18 L 19
- > CCT R 628 L 635
- ORA R 14, L 17
- > CH R12.6 L 13.1

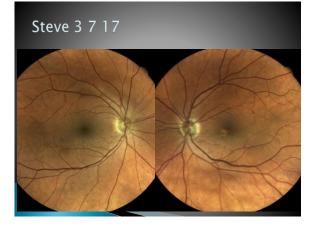




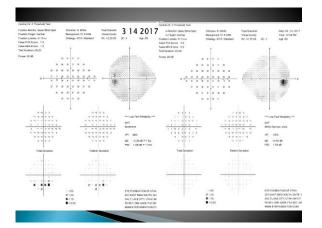


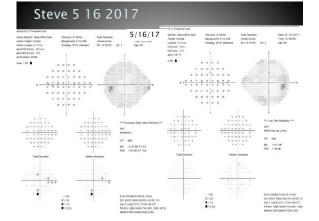


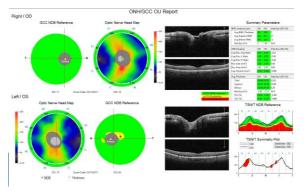


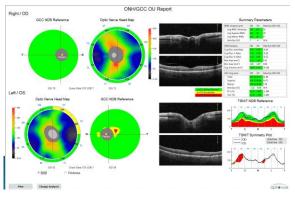


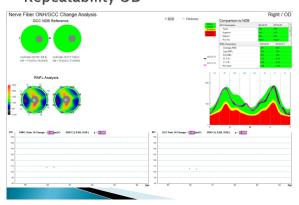
Steve 2017

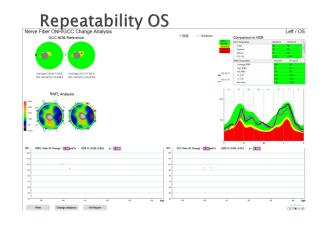

- VA sc OD 20/25 OS 20/30
- SLE Penetrating scar with retained metallic debris
 From galvanized nail
- PXE noted OU
- IOP R 20 L 38
- » DFE C/D R 0.2 L 0.3 x 0.2 healthy OU
- IOP repeated one week later
 R 22 L 32
- Rx Travatan-Z QHS OU





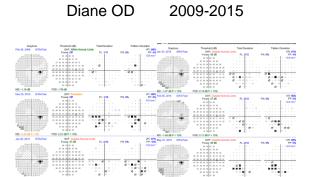



3 14 2017



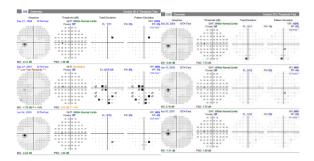
7 11 2017

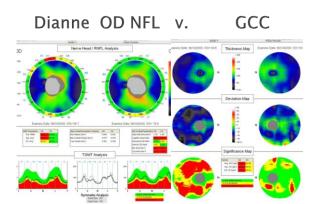
Repeatability OD

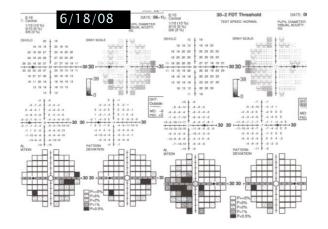


Diane

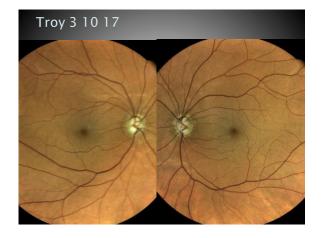
Diane OD

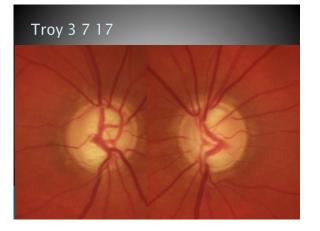

1998-2007

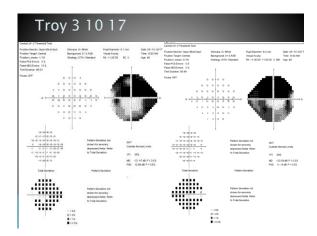

Diane OS 199

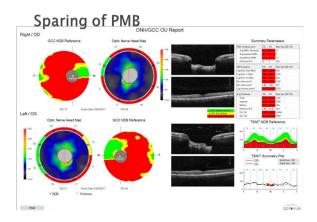

1998-2007

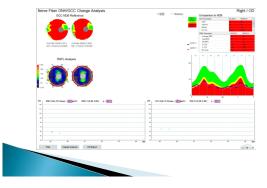
Diane OS 2009-2015

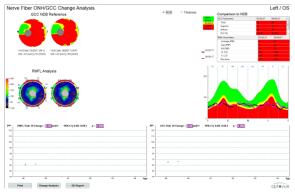

What does the OCT look like in severe glaucoma?


Is there any value in watching for progression analysis in severe glaucoma?

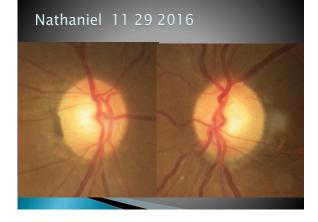

Troy

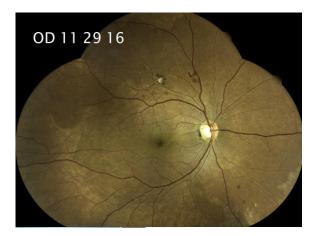

- > 50yo M Pigmentary Glaucoma
- Pre-Tx IOP R 30 L 30
- ORAcc R 32 L 28
- CCT R 600 L 602
- ► S/P SLT OU
- Travatan-Z, Simbrinza, timolol
- Current IOP R 14 L 14
- ORAcc R 17 L 17

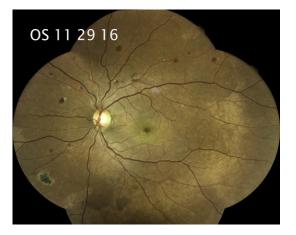




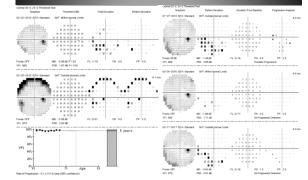
Troy 2016-2017

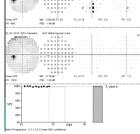

Troy 2016-2017

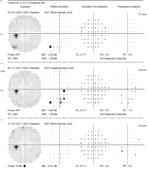

Progression Analysis

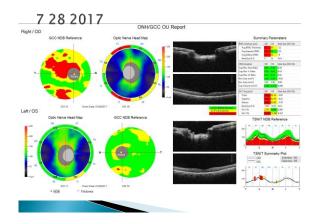

Nathaniel

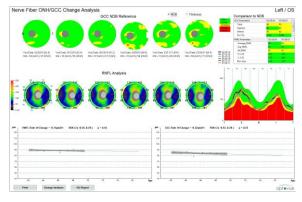
- ▶ 60yo AAM treated many years for OAG
- Stable or progressing?

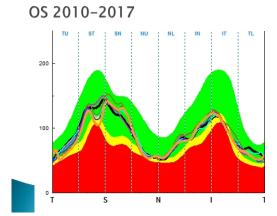




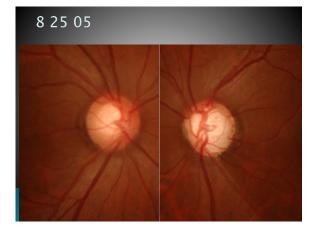



OD Stable through 2017

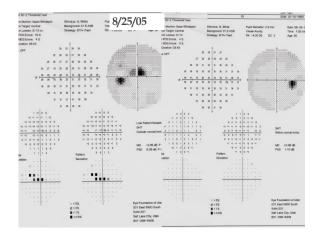




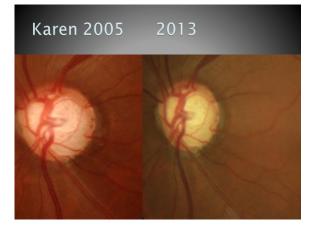
OS 2010-2017

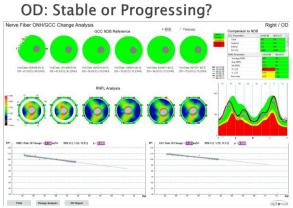

Moral of the Story

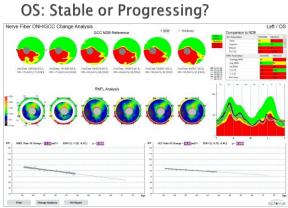
- Don't just watch for the slope of the NFL and GCC Rate of Change line!
- Need to look at the NFL curve and GCC images!

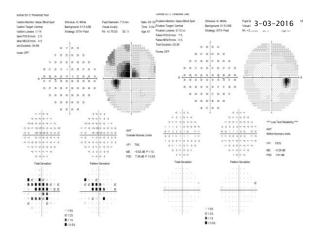


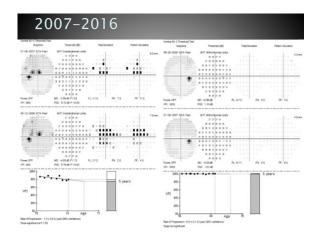
Karen 9 1 05


- Taking Travatan OS
- IOP: R 14 L 13
- IMP: +response to Travatan
- Plan: Continue Travatan OS for now









What have we learned?

- Definitely can detect damage on OCT prior to VF
- Check OCT, VF, ONP/NFL photos for correlation

May not correlate in early stage glaucoma

- Watch both NFL and GCC
 Can see damage better with NFL in some cases
 Can see damage better with GCC in others
- Vatch for asymmetry!
- OD v OS
- Superior rim v Inferior rim

